Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1146, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950046

RESUMO

Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson's and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.


Assuntos
Aprendizado Profundo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Animais , Humanos , Camundongos , Dopamina , Neurônios Dopaminérgicos , Substância Negra
2.
J Neurosci ; 42(40): 7530-7546, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36658458

RESUMO

Action potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. As it greatly varies between neuronal types, AP shape is also used to distinguish neuronal populations. For instance, AP duration ranges from hundreds of microseconds in cerebellar granule cells to 2-3 ms in SNc dopaminergic (DA) neurons. While most of this variation across cell types seems to arise from differences in the voltage- and calcium-gated ion channels expressed, a few studies suggested that dendritic morphology also affects AP shape. AP duration also displays significant variability in a same neuronal type, although the determinants of these variations are poorly known. Using electrophysiological recordings, morphological reconstructions, and realistic Hodgkin-Huxley modeling, we investigated the relationships between dendritic morphology and AP shape in rat SNc DA neurons from both sexes. In this neuronal type where the axon arises from an axon-bearing dendrite (ABD), the duration of the somatic AP could be predicted from a linear combination of the ABD and non-ABDs' complexities. Dendrotomy experiments and simulation showed that these correlations arise from the causal influence of dendritic topology on AP duration, due in particular to a high density of sodium channels in the somatodendritic compartment. Surprisingly, computational modeling suggested that this effect arises from the influence of sodium currents on the decaying phase of the AP. Consistent with previous findings, these results demonstrate that dendritic morphology plays a major role in defining the electrophysiological properties of SNc DA neurons and their cell-to-cell variations.SIGNIFICANCE STATEMENT Action potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. AP shape (e.g., duration) greatly varies between neuronal types but also within a same neuronal type. While differences in ion channel expression seem to explain most of AP shape variation across cell types, the determinants of cell-to-cell variations in a same neuronal type are mostly unknown. We used electrophysiological recordings, neuronal reconstruction, and modeling to show that, because of the presence of sodium channels in the somatodendritic compartment, a large part of cell-to-cell variations in somatic AP duration in substantia nigra pars compacta dopaminergic neurons is explained by variations in dendritic topology.


Assuntos
Neurônios Dopaminérgicos , Substância Negra , Masculino , Feminino , Ratos , Animais , Neurônios Dopaminérgicos/fisiologia , Potenciais de Ação/fisiologia , Substância Negra/fisiologia , Canais de Cálcio/metabolismo , Canais de Sódio/metabolismo , Neurotransmissores/metabolismo
3.
Cell Rep ; 37(4): 109884, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706225

RESUMO

Pain, whether acute or persistent, is a serious medical problem worldwide. However, its management remains unsatisfactory, and new analgesic molecules are required. We show here that TAFA4 reverses inflammatory, postoperative, and spared nerve injury (SNI)-induced mechanical hypersensitivity in male and female mice. TAFA4 requires functional low-density lipoprotein receptor-related proteins (LRPs) because their inhibition by RAP (receptor-associated protein) dose-dependently abolishes its antihypersensitive actions. SNI selectively decreases A-type K+ current (IA) in spinal lamina II outer excitatory interneurons (L-IIo ExINs) and induces a concomitant increase in IA and decrease in hyperpolarization-activated current (Ih) in lamina II inner inhibitory interneurons (L-IIi InhINs). Remarkably, SNI-induced ion current alterations in both IN subtypes were rescued by TAFA4 in an LRP-dependent manner. We provide insights into the mechanism by which TAFA4 reverses injury-induced mechanical hypersensitivity by restoring normal spinal neuron activity and highlight the considerable potential of TAFA4 as a treatment for injury-induced mechanical pain.


Assuntos
Citocinas/metabolismo , Hiperalgesia/metabolismo , Dor/metabolismo , Potássio/metabolismo , Receptores de LDL/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Camundongos , Células RAW 264.7
4.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131060

RESUMO

Substantia nigra pars compacta (SNc) dopaminergic (DA) neurons display a peculiar electrical phenotype characterized in vitro by a spontaneous tonic regular activity (pacemaking activity), a broad action potential (AP) and a biphasic postinhibitory response. The transient A-type current (IA) is known to play a crucial role in this electrical phenotype, and so far, this current was considered to be carried exclusively by Kv4.3 potassium channels. Using Kv4.3-/- transgenic mice, we demonstrate that the constitutive loss of this channel is associated with increased exploratory behavior and impaired motor learning at the behavioral level. Consistently, it is also associated with a lack of compensatory changes in other ion currents at the cellular level. Using antigen retrieval (AR) immunohistochemistry, we then demonstrate that Kv4.2 potassium channels are also expressed in SNc DA neurons, although their contribution to IA appears significant only in a minority of neurons (∼5-10%). Using correlative analysis on recorded electrophysiological parameters and multicompartment modeling, we then demonstrate that, rather than its conductance level, IA gating kinetics (inactivation time constant) appear as the main biophysical property defining postinhibitory rebound delay and pacemaking frequency. Moreover, we show that the hyperpolarization-activated current (IH) has an opposing and complementary influence on the same firing features.


Assuntos
Neurônios Dopaminérgicos , Substância Negra , Potenciais de Ação , Animais , Camundongos , Camundongos Transgênicos , Parte Compacta da Substância Negra
5.
Annu Rev Neurosci ; 44: 335-357, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33770451

RESUMO

The large number of ion channels found in all nervous systems poses fundamental questions concerning how the characteristic intrinsic properties of single neurons are determined by the specific subsets of channels they express. All neurons display many different ion channels with overlapping voltage- and time-dependent properties. We speculate that these overlapping properties promote resilience in neuronal function. Individual neurons of the same cell type show variability in ion channel conductance densities even though they can generate reliable and similar behavior. This complicates a simple assignment of function to any conductance and is associated with variable responses of neurons of the same cell type to perturbations, deletions, and pharmacological manipulation. Ion channel genes often show strong positively correlated expression, which may result from the molecular and developmental rules that determine which ion channels are expressed in a given cell type.


Assuntos
Canais Iônicos , Neurônios
6.
J Neurosci ; 39(26): 5044-5063, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028116

RESUMO

In many neuronal types, axon initial segment (AIS) geometry critically influences neuronal excitability. Interestingly, the axon of rat SNc dopaminergic (DA) neurons displays a highly variable location and most often arises from an axon-bearing dendrite (ABD). We combined current-clamp somatic and dendritic recordings, outside-out recordings of dendritic sodium and potassium currents, morphological reconstructions and multicompartment modeling on male and female rat SNc DA neurons to determine cell-to-cell variations in AIS and ABD geometry, and their influence on neuronal output (spontaneous pacemaking frequency, action potential [AP] shape). Both AIS and ABD geometries were found to be highly variable from neuron to neuron. Surprisingly, we found that AP shape and pacemaking frequency were independent of AIS geometry. Modeling realistic morphological and biophysical variations helped us clarify this result: in SNc DA neurons, the complexity of the ABD combined with its excitability predominantly define pacemaking frequency and AP shape, such that large variations in AIS geometry negligibly affect neuronal output and are tolerated.SIGNIFICANCE STATEMENT In many neuronal types, axon initial segment (AIS) geometry critically influences neuronal excitability. In the current study, we describe large cell-to-cell variations in AIS length or distance from the soma in rat substantia nigra pars compacta dopaminergic neurons. Using neuronal reconstruction and electrophysiological recordings, we show that this morphological variability does not seem to affect their electrophysiological output, as neither action potential properties nor pacemaking frequency is correlated with AIS morphology. Realistic multicompartment modeling suggests that this robustness to AIS variation is mainly explained by the complexity and excitability of the somatodendritic compartment.


Assuntos
Potenciais de Ação/fisiologia , Segmento Inicial do Axônio/fisiologia , Neurônios Dopaminérgicos/fisiologia , Substância Negra/fisiologia , Animais , Axônios/fisiologia , Dendritos/fisiologia , Feminino , Masculino , Modelos Neurológicos , Ratos
7.
Front Cell Neurosci ; 13: 570, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038171

RESUMO

Our general understanding of neuronal function is that dendrites receive information that is transmitted to the axon, where action potentials (APs) are initiated and propagated to eventually trigger neurotransmitter release at synaptic terminals. Even though this canonical division of labor is true for a number of neuronal types in the mammalian brain (including neocortical and hippocampal pyramidal neurons or cerebellar Purkinje neurons), many neuronal types do not comply with this classical polarity scheme. In fact, dendrites can be the site of AP initiation and propagation, and even neurotransmitter release. In several interneuron types, all functions are carried out by dendrites as these neurons are devoid of a canonical axon. In this article, we present a few examples of "misbehaving" neurons (with a non-canonical polarity scheme) to highlight the diversity of solutions that are used by mammalian neurons to transmit information. Moreover, we discuss how the contribution of dendrites and axons to neuronal excitability may impose constraints on the morphology of these compartments in specific functional contexts.

8.
Sci Rep ; 8(1): 13637, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206240

RESUMO

Most neuronal types have a well-identified electrical phenotype. It is now admitted that a same phenotype can be produced using multiple biophysical solutions defined by ion channel expression levels. This argues that systems-level approaches are necessary to understand electrical phenotype genesis and stability. Midbrain dopaminergic (DA) neurons, although quite heterogeneous, exhibit a characteristic electrical phenotype. However, the quantitative genetic principles underlying this conserved phenotype remain unknown. Here we investigated the quantitative relationships between ion channels' gene expression levels in midbrain DA neurons using single-cell microfluidic qPCR. Using multivariate mutual information analysis to decipher high-dimensional statistical dependences, we unravel co-varying gene modules that link neurotransmitter identity and electrical phenotype. We also identify new segregating gene modules underlying the diversity of this neuronal population. We propose that the newly identified genetic coupling between neurotransmitter identity and ion channels may play a homeostatic role in maintaining the electrophysiological phenotype of midbrain DA neurons.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica/genética , Canais Iônicos/genética , Neurotransmissores/genética , Animais , Dopamina/genética , Dopamina/metabolismo , Fenômenos Eletrofisiológicos , Canais Iônicos/metabolismo , Mesencéfalo/metabolismo , Camundongos , Camundongos Transgênicos , Neurotransmissores/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo
9.
Elife ; 32014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25329344

RESUMO

Neurons have complex electrophysiological properties, however, it is often difficult to determine which properties are the most relevant to neuronal function. By combining current-clamp measurements of electrophysiological properties with multi-variate analysis (hierarchical clustering, principal component analysis), we were able to characterize the postnatal development of substantia nigra dopaminergic neurons' electrical phenotype in an unbiased manner, such that subtle changes in phenotype could be analyzed. We show that the intrinsic electrical phenotype of these neurons follows a non-linear trajectory reaching maturity by postnatal day 14, with two developmental transitions occurring between postnatal days 3-5 and 9-11. This approach also predicted which parameters play a critical role in phenotypic variation, enabling us to determine (using pharmacology, dynamic-clamp) that changes in the leak, sodium and calcium-activated potassium currents are central to these two developmental transitions. This analysis enables an unbiased definition of neuronal type/phenotype that is applicable to a range of research questions.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Fenômenos Eletrofisiológicos , Dinâmica não Linear , Parte Compacta da Substância Negra/crescimento & desenvolvimento , Parte Compacta da Substância Negra/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Membrana Celular/fisiologia , Análise por Conglomerados , Feminino , Masculino , Análise Multivariada , Inibição Neural/fisiologia , Fenótipo , Análise de Componente Principal , Ratos Wistar , Reprodutibilidade dos Testes
10.
PLoS One ; 9(9): e106803, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265278

RESUMO

Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.


Assuntos
Sinalização do Cálcio , Fator de Crescimento Epidérmico/metabolismo , Animais , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Receptores ErbB/metabolismo , Humanos , Cinética
11.
Toxicon ; 92: 14-23, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25240295

RESUMO

We have purified the AaTX1 peptide from the Androctonus australis (Aa) scorpion venom, previously cloned and sequenced by Legros and collaborators in a venom gland cDNA library from Aa scorpion. AaTX1 belongs to the α-Ktx15 scorpion toxins family (αKTx15-4). Characterized members of this family share high sequence similarity and were found to block preferentially IA-type voltage-dependent K(+) currents in rat cerebellum granular cells in an irreversible way. In the current work, we studied the effects of native AaTX1 (nAaTX1) using whole-cell patch-clamp recordings of IA current in substantia nigra pars compacta dopaminergic neurons. At 250 nM, AaTX1 induces 90% decrease in IA current amplitude. Its activity was found to be comparable to that of rAmmTX3 (αKTx15-3), which differs by only one conserved (R/K) amino acid in the 19th position suggesting that the difference between R19 and K19 in AaTX1 and AmmTX3, respectively, may not be critical for the toxins' effects. Molecular docking of both toxins with Kv4.3 channel is in agreement with experimental data and suggests the implication of the functional dyade K27-Y36 in toxin-channel interactions. Since AaTX1 is not highly abundant in Aa venom, it was synthesized as well as AmmTX3. Synthetic peptides, native AaTX1 and rAmmTX3 peptides showed qualitatively the same pharmacological activity. Overall, these data identify a new biologically active toxin that belongs to a family of peptides active on Kv4.3 channel.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Neuropeptídeos/toxicidade , Venenos de Escorpião/química , Canais de Potássio Shal/metabolismo , Sequência de Aminoácidos , Animais , Biblioteca Gênica , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Neuropeptídeos/análise , Técnicas de Patch-Clamp , Análise de Sequência de DNA , Homologia de Sequência , Substância Negra/citologia
12.
J Neurosci Res ; 92(8): 981-99, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24723263

RESUMO

Dopaminergic neurons of the substantia nigra pars compacta (SNc) are involved in the control of movement, sleep, reward, learning, and nervous system disorders and disease. To date, a thorough characterization of the ion channel phenotype of this important neuronal population is lacking. Using immunohistochemistry, we analyzed the somatodendritic expression of voltage-gated ion channel subunits that are involved in pacemaking activity in SNc dopaminergic neurons in 6-, 21-, and 40-day-old rats. Our results demonstrate that the same complement of somatodendritic ion channels is present in SNc dopaminergic neurons from P6 to P40. The major developmental changes were an increase in the dendritic range of the immunolabeling for the HCN, T-type calcium, Kv4.3, delayed rectifier, and SK channels. Our study sheds light on the ion channel subunits that contribute to the somatodendritic delayed rectifier (Kv1.3, Kv2.1, Kv3.2, Kv3.3), A-type (Kv4.3) and calcium-activated SK (SK1, SK2, SK3) potassium currents, IH (mainly HCN2, HCN4), and the L- (Cav1.2, Cav1.3) and T-type (mainly Cav3.1, Cav3.3) calcium currents in SNc dopaminergic neurons. Finally, no robust differences in voltage-gated ion channel immunolabeling were observed across the population of SNc dopaminergic neurons for each age examined, suggesting that differing levels of individual ion channels are unlikely to distinguish between specific subpopulations of SNc dopaminergic neurons. This is significant in light of previous studies suggesting that age- or region-associated variations in the expression profile of voltage-gated ion channels in SNc dopaminergic neurons may underlie their vulnerability to dysfunction and disease.


Assuntos
Canais de Cálcio/metabolismo , Dendritos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Parte Compacta da Substância Negra/metabolismo , Canais de Potássio/metabolismo , Animais , Parte Compacta da Substância Negra/crescimento & desenvolvimento , Ratos , Ratos Wistar
13.
Elife ; 3: e02615, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24692452

RESUMO

Drugs could treat neuropathic pain more effectively if they simultaneously targeted two or more types of ion channel.


Assuntos
Gânglios Espinais/lesões , Gânglios Espinais/fisiopatologia , Neuralgia/fisiopatologia , Animais , Masculino
14.
Channels (Austin) ; 6(3): 149-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22647366

RESUMO

The 22(nd) Ion Channel Meeting was organized by the French Ion Channel Society (Association Canaux Ioniques) from the 25(th) to the 28(th) of September 2011 on the French Riviera (Giens). This year again, more than one hundred researchers from France, Europe and extra-European countries gathered to present and discuss their recent advances and future challenges in the ion channels and transporters field. The scientific committee organized a plenary lecture and five thematic symposia by inviting international researchers to present their recent outstanding work on themes as diverse as muscular channelopathies, regulation of channels by extracellular matrix, receptor-channels interactions, localization and distribution of ion channels, their involvement in the cell life and death, and finally how they participate in the evolution and adaptability of cellular excitability. These presentations are summarized in this meeting report. Two sessions of oral communications selected from submitted abstracts and two poster sessions were also organized to present the ongoing work of young researchers worldwide.


Assuntos
Canais Iônicos/metabolismo , Animais , Canalopatias/genética , Canalopatias/fisiopatologia , Humanos , Bombas de Íon/metabolismo
15.
J Neurosci ; 32(6): 2166-81, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22323729

RESUMO

The level of expression of ion channels has been demonstrated to vary over a threefold to fourfold range from neuron to neuron, although the expression of distinct channels may be strongly correlated in the same neurons. We demonstrate that variability and covariation also apply to the biophysical properties of ion channels. We show that, in rat substantia nigra pars compacta dopaminergic neurons, the voltage dependences of the A-type (I(A)) and H-type (I(H)) currents exhibit a high degree of cell-to-cell variability, although they are strongly correlated in these cells. Our data also demonstrate that this cell-to-cell covariability of voltage dependences is sensitive to cytosolic cAMP and calcium levels. Finally, using dynamic clamp, we demonstrate that covarying I(A) and I(H) voltage dependences increases the dynamic range of rebound firing while covarying their amplitudes has a homeostatic effect on rebound firing. We propose that the covariation of voltage dependences of ion channels represents a flexible and energy-efficient way of tuning firing in neurons.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/fisiologia , AMP Cíclico/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Neurônios Dopaminérgicos/fisiologia , Canais de Potássio/fisiologia , Animais , Animais Recém-Nascidos , Canais de Cálcio/fisiologia , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Ratos , Ratos Wistar
16.
Prog Neurobiol ; 94(4): 307-46, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21708220

RESUMO

Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Sinapses/fisiologia , Animais , Axônios/ultraestrutura , Dendritos/fisiologia , Humanos , Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia
17.
Curr Biol ; 21(8): R276-8, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21514507

RESUMO

The leech heartbeat neural network is famous for its constancy in both architecture and functional output across animals. A recent study, however, has found that the synaptic strengths underlying this constancy are quite variable across animals.


Assuntos
Sanguessugas/fisiologia , Animais , Fenômenos Eletrofisiológicos , Espaço Extracelular/fisiologia , Coração/inervação , Instinto , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Condução Nervosa/fisiologia
18.
J Neurosci ; 30(13): 4687-92, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20357119

RESUMO

Many neurons exhibit postinhibitory rebound (PIR), in which neurons display enhanced excitability following inhibition. PIR can strongly influence the timing of spikes on rebound from an inhibitory input. We studied PIR in the lateral pyloric (LP) neuron of the stomatogastric ganglion of the crab Cancer borealis. The LP neuron is part of the pyloric network, a central pattern generator that normally oscillates with a period of approximately 1 s. We used the dynamic clamp to create artificial rhythmic synaptic inputs of various periods and duty cycles in the LP neuron. Surprisingly, we found that the strength of PIR increased slowly over multiple cycles of synaptic input. Moreover, this increased excitability persisted for 10-20 s after the rhythmic inhibition was removed. These effects are considerably slower than the rhythmic activity typically observed in LP. Thus this slow postinhibitory rebound allows the neuron to adjust its level of excitability to the average level of inhibition over many cycles, and is another example of an intrinsic "short-term memory" mechanism.


Assuntos
Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Animais , Braquiúros , Gânglios dos Invertebrados/fisiologia , Potenciais da Membrana , Técnicas de Patch-Clamp , Periodicidade , Sinapses/fisiologia
20.
Nat Neurosci ; 12(11): 1424-30, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19838180

RESUMO

How different are the neuronal circuits for a given behavior across individual animals? To address this question, we measured multiple cellular and synaptic parameters in individual preparations to see how they correlated with circuit function, using neurons and synapses in the pyloric circuit of the stomatogastric ganglion of the crab Cancer borealis. There was considerable preparation-to-preparation variability in the strength of two identified synapses, in the amplitude of a modulator-evoked current and in the expression of six ion channel genes. Nonetheless, we found strong correlations across preparations among these parameters and attributes of circuit performance. These data illustrate the importance of making multidimensional measurements from single preparations for understanding how variability in circuit output is related to the variability of multiple circuit parameters.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Piloro/citologia , Piloro/fisiologia , Sinapses/fisiologia , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Fenômenos Biofísicos/fisiologia , Biofísica/métodos , Braquiúros , Estimulação Elétrica/métodos , Gânglios dos Invertebrados/citologia , Regulação da Expressão Gênica , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Neurônios/efeitos dos fármacos , Periodicidade , Canais de Potássio/classificação , Canais de Potássio/genética , Canais de Potássio/metabolismo , Piloro/efeitos dos fármacos , RNA Mensageiro , Estatística como Assunto , Sistema Estomatognático/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...